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This paper examines the sound waves generated when a spherical water drop impacts 
upon an initially quiescent water surface. The pressure fluctuations and the acoustic 
energy radiated by the initial impact are calculated analytically. It is shown that the 
rapid momentum exchange between the fluid in the falling drop and that in the main 
water body causes the radiation of compressive waves. These waves are radiated in 
the form of a wave packet with a densely packed edge which is heard in the far field 
as a noisy shock-like pulse followed by a quickly decreasing tail. The wave packet 
carries with it sound energy proportional to the kinetic energy of the falling drop and 
to the cube of the impact Mach number. Applications of these analytic results to the 
study of noise from natural rain are discussed, and an illustrative example is given 
where the noise level due to rain showers is linearly related to the rainfall rate, which 
is shown to be consistent with observations. 

1. Introduction 
On account of its relevance to noise generation by rain showers, the phenomenon 

of a water droplet falling onto a flat water surface has attracted much research in 
recent years (e.g. Nystuen 1986; Pumphrey, Crum & Bjorno 1989; Oguz & 
Prosperetti 1990). These studies suggest that a falling droplet causes acoustic 
radiation essentially through two mechanisms, namely the initial impact and the 
subsequent entrainment and pulsations of air bubbles. While the sound associated 
with bubbles has been quite extensively studied over the past few decades (see, for 
example, Minnaert 1933 ; Strasberg 1956 ; Plesset & Prosperetti 1977), the initial 
impact sound is less satisfactorily understood, though it has long been conjectured 
to be an appreciable component of the noise generated by rain showers (Franz 1959; 
Wenz 1962). This is probably due to the highly transient nature and the extremely 
short timescale of the initial impact process, which makes both experimental 
observations and numerical simulations difficult. It is therefore desirable to establish 
analytical models that are simple enough to allow for analytical solutions, but yet 
reveal basic features of the sound associated with the impact process. This paper 
presents such a model. 

There is evidence that the spectral peak of rain noise at about 15kHz is 
dominantly produced by bubbles entrained by rain drops in a very narrow band of 
the drop size distribution (Pumphrey et al. 1989), and because of this, the amplitude 
of the spectral peak is not well correlated with the rain conditions such as wind 
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speeds and rainfall rates (Prosperetti, Crum & Pumphrey 1989). However, the 
overall noise levels of rain showers have been observed to be strongly dependent on 
these conditions ; variations in wind speeds and rainfall rates significantly change the 
noise level. For example, i t  has been observed that increases in the rate of rainfall 
increase the general level of the noise spectrum, particularly those relatively flat 
parts away from the sharp bubble-associated peak (Nystuen 1986; Scrimger et al. 
1989). This gives grounds for suggesting that, though the bubbles are responsible for 
the spectral peak, the overall noise level in strong winds and moderate or heavy rain 
is probably associated with processes other than the entrainment of bubbles. The 
initial impact is obviously a very likely candidate. I n  this paper, we examine how 
sound is generated when the impact occurs and how much sound is radiated during 
the impact. 

To this end, we consider a single spherical water drop falling onto an initially 
quiescent water surface. During the initial impact, the main mechanism of acoustic 
radiation is identified as the rapid momentum exchange between the fluid in the 
falling drop and that a t  rest in the main body of water. As the fluid in the falling drop 
impacts on the still water, momentum is imparted to the water body while the drop 
deforms and slows down. This process takes place over an extremely short interval, 
the momentum transfer being accomplished by the radiation of compressive waves 
which eventually escape to the far field as sound. These waves mostly emanate from 
the contact circle between the drop and the water surface during the initial period 
when the contact circle expands supersonically. Once the expanding contact circle 
becomes subsonic, the falling process only furnishes weak acoustic sources because 
some waves overtake the contact circle, accelerating the fluid ahead of it which is 
brought into motion before i t  is hit by the falling fluid. This reduces the velocity 
difference between the two groups of fluid elements before the impact, and hence, 
renders the momentum exchange after the impact much more gradual and less well 
coupled to sound. 

Pressure waves due to the initial impact are calculated analytically in this paper 
and it is shown that they have amplitudes of the order pocU, where pa and c are 
respectively the constant mean density and sound speed in water, and U is the drop 
impact velocity. This is analogous to the classic water hammer phenomenon and has 
been noticed by Nystuen (1986) in his numerical calculations. In  experiments and 
numerical simulations, the pressures are usually observed to be less than, though of 
the same order as, p o d .  We will show that this is due to the three-dimensional 
propagation effects and is not associated with the impact dynamics. Locally, the 
impact is precisely the same as a one-dimensional water hammer ; the pressure waves 
are all launched with amplitude pa cU, but because they have to propagate away from 
their source in a three-dimensional space, their amplitudes decay owing to spherical 
spreading. We will show that these waves form a wave packet with a densely packed 
edge which is heard in the far field as a noisy shock-like pulse followed by a rapidly 
decreasing tail. The extremely short scale of this wave packet suggests its relevance 
to the relatively flat parts in the noise spectrum observed in natural rains. 

To see how much sound is radiated during the initial impact, we calculate the 
radiated acoustic energy and find that it is proportional to the kinetic energy carried 
by the falling drop and to the cube of the impact Mach number M = U / c ,  for small 
values of M ,  which is usually the case for drops in natural rains where M is of the 
order to lop3. The cubic dependence on the impact Mach number of the 
radiation efficiency indicates the dipole nature of the acoustic source (Lighthill 1952) 
and has been confirmed by Franz (1959) in his experimental studies. Using this 
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result, we will demonstrate that  the noise level from rain showers can be related to 
parameters such as rainfall rates, by incorporating experimental data on the drop 
size distribution. A simple example is given where the most energetic drops in a 
shower are assumed to have an identical effective size. This illustrative example 
shows that the sound intensity is a linear function of the rainfall rate, a result which 
we have derived before (Guo 1986) from a general theory based on dimensional 
analysis, which was shown to be consistent with measurements (Nystuen 1986) in 
both the functional dependence between sound level and rainfall rate and the 
absolute decibel levels (see also Scrimger et al. 1989). 

2. Formulation 
Though the process of a droplet falling onto a water surface is very complicated, 

the acoustic radiation associated with the initial impact can be examined in a very 
simple way by making use of the Kirchhoff theorem, which states that  the pressure 
fluctuations a t  the observation position x a t  time t can be expressed in terms of a 
retarded integral of the normal velocity distribution over a control surface (see, for 
example, Dowling & Ffowcs Williams 1983). We choose the initially undisturbed 
water surface as the control surface with a Cartesian coordinate system (x1,x2,x3) 
fixed such that the control surface coincides with the plane x3 = 0. A droplet of 
spherical shape with radius a is assumed to be falling in the negative x3 direction with 
constant velocity U,  and it touches the water surface at  the origin of the coordinate 
system at t = 0. The geometry is illustrated in figure 1. Denoting by u3(xa,t) the 
velocity distribution in the negative x3 direction on the control surface x3 = 0, the 
Kirchhoff theorem then gives the pressure fluctuations p ( x ,  t )  as 

where po is the constant mean density in water and the integrals are performed on 
the plane y3 = 0 a t  the retarded time 7 = t - Ix-yl /c ,  c being the constant sound 
speed in water and Ix - yl the modulus of x -y. Since the only time dependence in the 
integrand is contained in 7, the derivative with respect to t can be transferred inside 
the integrals and converted to one with respect to 7. We can then rewrite (2.1) as 

To evaluate this, it is necessary to specify the velocity distribution u3(xa, t ) .  It can 
be noted that, during the initial impact, this velocity distribution is non-zero only 
within the contact circle between the drop and the water surface because the contact 
circle expands supersonically. Denoting by b(t) the radius of the drop/surface contact 
circle, we find from the geometry of the problem that 

from which the expanding velocity of the circle can be derived by differentiation as 

12 

(a-Ut) U 
[a2 - ( a  - ~ t ) z ] t  ' 

b ( t )  = 

FLM 221 
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Falling droplet 

FIGURE 1. Water droplet falling onto an originally quiescent water surface. 
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FIGURE 2. The wave packet produced by the supersonically expanding contact circle. 

where the dot denotes a time derivative. This is larger than the constant sound speed 
c for small time. The instant t, at which 6 becomes smaller than c is given by 

where M = U / c  is the small impact Mach number. 
During the initial impact, since no waves can travel ahead of the supersonically 

expanding contact circle, the waves form a wave packet within the region inside the 
contact circle Ix,I < b( t ) ,  as schematically shown in figure 2. These waves are not 
aware of any boundary effects so that they are completely anti-symmetrical about 
the plane x3 = 0;  the velocity within the wave packet varies continuously from zero 
at  the edge of the packet in the water body to the constant value U at the edge in 
the drop. Thus, the velocity distribution on the median plane must be half the 
velocity difference U. It should be pointed out that  this is true only for t < t, when 
6 is greater than c ;  when 6 becomes subsonic, some waves may overtake the 
expanding contact circle, be reflected by the pressure release surface ahead of the 
contact circle, and hence, destroy the complete axisymmetry. However, the process 
taking place when t > t, is much less significant in radiating sound waves. Therefore, 
the velocity distribution u3(xa, t )  can be written as 

u&,, t )  = W W )  H ( b ( t )  - lxal), (2.6) 

where H is the Heaviside step function, equal to  unity for positive arguments and 
zero otherwise. It is now constructive to  compare this result with that in the classic 
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one-dimensional water hammer theory where a quiescent water column is hit by 
another falling column. When this occurs, two waves are produced by the impact, 
one travelling into the quiescent water and the other into the falling column. As a 
result, the velocity jumps by half of the impact velocity every time a wave is passed, 
which gives the velocity between the two waves everywhere to be precisely half the 
impact velocity. In  our case of a falling droplet, the velocity within the wave packet 
is not everywhere equal to +U because of the three-dimensional spreading effects. 
However, the properties of these axisymmetrical waves ensure that the velocity on 
the median plane is exactly half the impact velocity. 

On substituting (2.6) into the Kirchhoff formulation (2.2), it immediately follows 
that 

where 6 is the Dirac delta function resulting from the derivative of the Heaviside 
function. The y, integrals can be conveniently evaluated by changing the integration 
variable to polar coordinates according to y1 = A cos a and y2 = A sin a, and 
performing the a-integral by making use of the properties of the &function (Jones 
1982). When this is done, the pressure fluctuations can be found to be 

where, as a shorthand, h = [Ut-a+(a2-A2)~] /M.  It should be pointed out that care 
must be taken when evaluating this integral a t  positions close to the vertical axis 
where IxJ + 0. I n  this case, the integration limits, determined by the Heaviside 
function in the integrand, approach each other so that the integral limits to zero if 
the integrand remains finite. However, when the quantity )xI2 + A2 - h2 also tends to 
zero, the integrand becomes unbounded, the integral in this case being non-zero and 
finite, as will become clear in the next section. 

3. The pressure waves 
The pressure waves radiated by the initial impact can now be examined through 

the result (2.8), which, after some straightforward changes of variables, can be 
rewritten as 

where the tildes mean non-dimensional quantities with the definitions 

- ut t = -  - aM2' x=- aM' 

and the integration limits are also determined by requiring the argument in the 
square root to be positive, which comes from the Heaviside function in (2.8). The 
argument in the square root is a quartic polynomial in the integration variable 7. 
Thus, according to the formula (3.148) of Gradshteyn & Ryzhik (1980), the integral 
is in principle expressible in terms of elliptic functions. It is also straightforward 
to evaluate it numerically; some results are shown in figure 3 where contours of 

1 2 - 2  
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b(t) 

FIGURE 3. Contours of p ( x ,  t ) / p ,  Uc within the wave packet. 

p ( x ,  t ) /po Uc are plotted in the (Ixal,x3)-plane, corresponding to the case of f =  0.5 
and M = lop3. Since the waves are axisymmetrical about the plane x3 = 0, only half 
of the wave packet is plotted. 

It can be seen from this figure that the compressive waves form a wave packet 
within the expanding circle I x , ~  < b( t ) .  Close to the edge of the wave packet, the 
contours are densely packed, which indicates that  the far field sound will be heard 
as a noisy shock-like pulse of very short duration. These are the typical characteristics 
of impact sound observed in experiments (e.g. Franz 1959). The values of the 
contours in figure 3 are all smaller than, but of the same order as, unity ; The Waves 
have amplitudes of the order po Uc, which is analogous to a one-dimensional water 
hammer, and is in agreement with the numerical calculations by Nystuen (1986). 
Note that the actual impact between the falling fluid elements and those at rest in 
the water occurs at the contact circle close to which the contour values are nearly 
unity. As the waves, generated with amplitude po Uc, travel away from their source, 
namely the contact circle, the contour values decrease. The impact is locally exactly 
the same as the water hammer phenomenon, and the somewhat weaker pressure 
fluctuations observed in Nystuen’s numerical calculations are due to the spreading 
effect; the effect is not related to any dynamics of the impact. 

Now, we examine the pressure waves propagating along the x3 axis (namely, the 
axis where Ix,I = 0 ) ,  which is of particular interest because it is probably the most 
noisy direction; the far-field sound follows a dipole radiation pattern with its 
maximum on this axis. This feature is not clear from figure 3 because this figure only 
shows the wave pattern for small time t < t,. When these compressive waves escape 
to the far field as sound, some of them must undergo reflections from either the drop 
surface or the surface of the water body, both of which are pressure-release surfaces, 
when they overtake the gradually expanding contact circle for t > t,. However, since 
the reflected waves, and those much weaker waves produced by the subsonically 
expanding contact circle after the initial impact, can never overtake the waves which 
are directly generated by the initial impact and are propagating along the negative 
x3 axis down into the water body, the results obtained in the previous section could 
equally represent the actual far-field sound in this direction, with all the reflection 
effects only modifying the shape of the rapidly decaying tail that follows the initial 
noisy pulse. 

To derive the pressures on the x3 axis, it is convenient to make use of the result 
(2.7),  which, with Ix,I set to zero, assumes the form 

where now 7 = t-(xi+y:)i/c. Similarly to the calculation of (2.7),  we make the 
change of integration variables y1 = h cos a and yz = h sin a. It is then clcar that  the 
integrand does not have any a-dependence so that the a integral is simply 2x, and 
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FIGURE 4. Pressures on the x3 axis as a function of time. 

the &-function in the integrand can be utilized to carry out  the A-integration, which 
reduces (3.3) to 

1 1 -MZt"+M2[ 1 + 2; + 2t"+MZ(Pi - P)]i 
, (3.4) P(x,t) = 

pout 2(M2+1) [ 1 + 2; + 2t"+M2(2; - P)]: 

where non-dimensional variables defined by (3.2) have been used. 
Some results calculated from (3.4) are shown in figure 4;  the shock-like initial pulse 

is evident, followed by a rapidly decreasing tail. The broken curves indicate the parts 
of the tails where it is not sufficient to use these results to represent the far-field 
sound. Both the drop surface and the surface of the water body are pressure-release 
surfaces with a reflection coefficient of - 1. Thus the reflected waves have opposite 
sign to those coming directly from the impact; if these negative waves were taken 
into account, the tails shown in figure 4 would undoubtedly decrease to a negative 
value before forming the complete cycle observed in experiments and numerical 
simulations (e.g. Franz 1959; Nystuen 1986). It should be noted that the solid curves 
in figure 4 are not exact pressures; most parts of them will be modified by waves 
radiated after the initial impact. However, those waves are weak compared with the 
initial impact-generated shock-like pulses. Thus, the solid curves can be expected to 
give dominant contributions to the far-field sound. 

4. The radiated acoustic energy 
As analysed in the previous section, the waves shown in figure 3 must undergo 

reflections from the boundary surfaces before they escape to the far field, so that the 
far-field radiation pattern can only be examined by including these reflection effects, 
which does not appear to be an easy task. However, the acoustic energy radiated to 
the far field can be calculated directly from the results derived in the previous 
sections without having to examine the far-field structure. This is because the energy 
radiated to infinity is precisely equal to  the energy carried by the waves shown in 
figure 3 and represented by the result (2.8) ; the reflections only affect the form of the 



352 Y .  P .  Guo and J .  E .  Ffowcs Williams 

pressure pulse. There is no mechanism in our model for this compressional energy, 
once it has been converted from the kinetic energy of the falling drop, to be converted 
back to kinetic energy again, so that i t  must all be radiated to the far field. Thus, the 
radiated acoustic energy can be calculated from the formula 

where ua(xu, t )  is the velocity distribution on the plane x3 = 0 specified by (2 .6 )  and 
p(xur 0, t )  can be conveniently taken as (2 .8 )  with x3 set to  zero. The factor 2 in (4 .1 )  
takes account of the energy carried by those waves which originally propagate 
upwards into the droplet, but are later reflected back into the water body by the drop 
surface and eventually radiated to the far field. 

On substituting ( 2 . 6 )  and (2 .8)  into ( 4 . 1 ) ,  it follows that 

H(b(t)-Ix,l)H[4h2x;- ( ~ ; + h ~ - h ' ) ~ ]  E = p$ 1' 1"' h dh dt d2x,, (4 .2 )  
[4h2x2- (X;+P-h2)2]f 

(4 .3 )  

where the last step follows from changing the x, integrals to polar coordinates 
according to x1 = r cos /3 and x2 = r sin /3 with the /?-integral equal trivially to 27c since 
the integrand has no /3-dependence. By making use of the formula (2.261) from 
Gradshteyn & Ryzhik (1980),  the r-integral can be carried out, with the result 

(4 .4 )  

where the integration bounds A and B are jointly determined by the two inequalities 

0 < r < b, 4h2r2-(r2+h2-h2)2  > 0, 

the latter of which results from the Heaviside function on the left-hand side of (4 .4 )  
and can be easily shown to be equivalent to  

Ih-lhlI < r < h+lhl. 

Considering that the t-integral is from zero to t ,  and that with respect to h from zero 
to b( t ) ,  it is straightforward to  prove the relation 

0 < Ih-lh( I < h+lhl < b, 

from which we can determine the integration limits A and B to be 

A = Ih- IhJ 1, B = A+ Ihl. 

On substituting these into ( 4 . 4 ) ,  the right-hand side of it reduces to 
becomes 

and (4 .3 )  

Making use of ( 2 . 5 )  for t , ,  this result can be rewritten in terms of the impact Mach 
number M as 

- E l  = - ( 2 +  1 
E ,  4M (4 .5)  
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where E,  is the kinetic energy carried by the falling drop, that is, 

E , - 4  - 6po Vrca3. 

This result reveals that the acoustic energy radiated owing to the initial impact is 
proportional to the drop energy E,  and to the cube of the drop impact Mach number 
M ,  indicating the dipole nature of the radiation, as described by the Lighthill (1952) 
theory of noise production by flow processes. The cubic Mach-number dependence of 
the radiation efficiency has also been observed in the experiments of Franz (1959). 

Having derived the acoustic energy from a single droplet, we can now use the 
result to predict the relation between the sound level in a rain shower and the rate 
of rainfall. To demonstrate this, we give a simple example where we assume that the 
shower contains acoustically energetic drops of identical size. Letting N denote the 
number of drops impacting on unit surface area within unit time, the rate of rainfall 
per unit time is then given by 

Since the acoustic energy radiated from a single droplet is given by (4.5), the energy 
from unit source area within unit time is simply E times N ,  provided that the drops 
are energetically decoupled from each other, which is very likely to be the case 
because drops in natural rains are sporadically and sparsely distributed. It can also 
be noted that, if the shower covers a large surface area, this amount of energy is 
actually the energy flux of sound in the far field, namely the sound intensity. 
Denoting it by I ,  we have from (4.6) that 

R = &a 3N. (4.7) 

I = &I, U2na3WN. (4.8) 

The combination of (4.7) and (4.8) then immediately yields the relation between the 
sound intensity Z and the rainfall rate R as 

I = &po V W R ,  (4-9) 

which shows a linear dependence between the two, and is consistent with 
experimental observations (Scrimger et al. 1989). We have derived a similar result to 
(4.9) before from a general theory based on dimensional analysis (Guo 1986), where 
the theoretical predictions were compared with some available measurements 
(Nystuen 1986), which shows quite good consistency in both the functional 
dependence between the sound level and the rainfall rate and the absolute decibel 
levels. It should be pointed out that this simple example should be taken as no more 
than an illustration of how our theoretical development can be applied to predict rain 
noise ; a more accurate prediction would require consideration of more factors that 
may well be important but are not taken into account here. These, among other 
things, include considering the drop size as a distribution instead of a single value, 
and the impact velocity as a function of the drop size. It should also be pointed out 
that the acoustic energy radiation predicted by the above theory is likely to be 
relevant to the high-frequency noise away from the spectral peak. 

5. Conclusions 
To see how sound is generated by the initial impact of a droplet falling onto an 

otherwise quiescent water surface, we have examined the flow and the radiated 
compressive waves due to the impact. It has been shown that the impact causes rapid 
momentum exchange between the falling fluid elements and those in the water body, 
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and that this exchange is accomplished by the radiation of compressive waves which 
escape to  the far field as sound. The supersonically expanding contact circle between 
the drop surface and the water surface has been identified as the main source of 
compressive waves, because the momentum exchange is most rapid in the region 
close to the contact circle. When the expanding velocity ofthe contact circle becomes 
subsonic, some waves travel outwards horizontally to overtake the contact circle and 
energize the fluid elements ahead of the contact circle in both the droplet and the 
water body. This reduces the velocity difference between the two groups of fluid 
elements before the impact occurs, so that the momentum exchange after the impact 
is much more gradual and less significant acoustically. 

The wave pattern produced by the initial impact has been derived analytically, 
and shows that the waves have amplitudes of the order po Uc, in analogy with the 
phenomenon of the one-dimensional water hammer. In  fact, we have shown that the 
impact is locally precisely a water hammer phenomenon; all of the waves are 
produced with amplitude exactly equal to poUc, but because the waves have to 
propagate away from their source in a three-dimensional space, and in doing so suffer 
from amplitude decrease due to spherical spreading, the observed impact pressure 
fluctuations are usually less than this value. It has been shown that the initial 
impact-generated waves form a wave packet with higher values close to its front 
edge. The far-field sound will then by heard as a noisy shock-like pulse of extremely 
short duration, followed by a tail of rapidly decreasing amplitude. The pressure- 
release boundary surfaces reflect some of the waves from the direct impact. These 
reflected waves have the opposite sign to the original waves so that the far-field 
sound pulse has a tail, probably decreasing to  a negative value before its amplitude 
decays to  zero, forming the complete cycle which has often been observed in both 
experiments and numerical simulations. 

The pressure wave pattern has been given only for small time right after the 
impact. To examine the far-field radiation a t  large time, effects such as the reflection 
from the boundary surfaces would have to be taken into account, which appears to 
be a very difficult task. However, the acoustic energy that is expected to be radiated 
to the far field has been calculated analytically. This can be done because this 
amount of energy is actually equal to  that carried by the waves a t  small time before 
they reach the far field, that is, before they undergo the reflection process. The 
reflection only changes the pressure wave form, but has no effect on the energy 
carried by the waves. We have shown that the acoustic energy from the impact of 
a single droplet is proportional to the kinetic energy carried by the drop and to the 
cube of the impact Mach number, a result which has also been obtained before from 
both experimental observations and theoretical studies. To demonstrate the possible 
application of our theoretical investigation to natural rain, we have given a simple 
example where the sound level from a rain shower is related to  the rate of rainfall; 
this shows a linear dependence between the two. We have noted the consistency 
between the predicted results in this simple example and some available 
measurements in both functional dependence and actual decibel levels. 
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